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Abstract

I develop a dynamic asset pricing model in which subject beliefs about stock price

behavior are heterogeneous and susceptible to peer effects. Two types of traders opti-

mally learn from past price realizations and share beliefs in a social network. I show

that, at each period, the equilibrium price is a function of traders’ beliefs and the net-

work structure. As a result, booms and busts of the price-dividend ratio emerge. The

most (least) speculative trader is the most influential during booms (busts). More con-

nected networks exhibit less volatile price dividend ratio, booms and busts episodes

last longer, and the average price realization is higher. Also, there is less disagreement

in beliefs. However, if traders of the same type are highly interconnected stock mar-

ket volatility is higher and booms and busts are shorter. The model captures relevant

empirical features of stock prices and returns, and it is also consistent with the survey

evidence on investor expectations.
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1 Introduction

Motivated by recent booms and busts episodes in several asset markets, research has
been devoted to better understand why and how such behavior emerges. At the same
time, it is known that information and beliefs play a role in every model and every eco-
nomic choice. The existing literature on asset pricing mainly focus on agents having sub-
jective beliefs about market outcomes as an explanation for such phenomena of aggregate
stock market prices. Yet, the social structures where these agents directly interact with
one another have not been extensively explored. Social connections transmit information
through communication, exchange of opinions, and observations of others’ decisions. In
this paper I argue that, along with heterogeneity in beliefs, information sharing dictated
by investors’ social ties are an important ingredient for understanding asset price dynam-
ics.

I explore the effects of communication in an asset pricing model introduce by Adam
et al. (2016) in which agents learn about stock-market price and are internally rational. I
extend their work by allowing agents to hold heterogenous subjective expectations about
asset price behavior and diffuse beliefs through connections captured by an exogenous
social network of investors. At each period, agents hold private beliefs which are sus-
ceptible to social influece. After interacting with others in their neighborhood, they for-
mulate public beliefs, which are a result of peer effects excerced by whom the agents are
connected to. Hence, social interaction renders a conformism in public beliefs.

I focus on the role of social network as facilitating social influence, specifically through
communication. People are constantly talking with each other, discussing opinions and
seeking knwoledge. For instance, Calvó-Armengol et al. (2009) and Jackson (2010) argue
that the behavior of individual agents is affected by that of their peers. This ‘peer effect’
can shape human behavior in the sense that a person holds certain public beliefs because
his friends do so. Specifically in the financial markets, one can observe that investors tend
to seek financial advice, search for stock-market news and discuss with their mates before
making asset investment decisions. It is then natural to think that investors incorporate,
at least partially, some of this social engagement into their conduct towards economic
activity and tend to conform with those who they interact. Several studies in the network
literature have explored these concepts under a wide range of research area (To name a
few: Bala and Goyal (1998), DeMarzo et al. (2003), Banerjee et al. (2013), Banerjee and
Fudenberg (2004), Golub and Jackson (2010)).
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In the model, agents formulate beliefs about risk-adjusted stock price growth using
optimal Bayesian filtering techniques and last-period observations of price and dividend.
They adjust beliefs upward (downward) if they underpredict (overpredict) the realized
price outcome. I characterize agents into two types, experienced (L) and inexperienced
(H) investors. Both types have the same optimal belief-updating equation except that H-
agents update their posteriors more heavily in response to forecast errors. Hence, inex-
perienced agents have more volatile expectations than experienced ones. Evidence from
U.S. stock-market (Vissing-Jorgensen (2003), Adam et al. (2015)) shows that investors with
less experience in the stock market (in number of years) updated expectations about fu-
ture asset returns more strongly. This fact can be explained, for example, by investors
having different information sources. In this case, experienced agents, who have been
trading for longer, have access to certain pieces of valuable information before other in-
vestors; while the inexperienced type rely more on publicly available information such
as past asset prices. Another plausible reason is that those with more experience have
higher self-confidence to trade and so rely less on last period observations. Finally, in-
vestors can simply have different economic models in mind that lead them to interpret
forecast errors diferently. Hong and Stein (2007) extensively discuss sources of disagree-
ment in expectations in the stock market and corroborate their arguments with evidences
from U.S. data.

After the individual learning scheme takes place, investors engage in direct, truth-
full communication with others that are connected to them through an underlying social
network. Each agent attaches a weight to each belief he receives, and these weights are
type-specific. Hence, invidual weights are given by the proportion of H-type and L-type
friends each investor has. This information sharing results in a new revision of subjec-
tive expectations. However, communication does not change agents’ private belief about
price growth, given by his type, and so agents agree to disagree forever.

Private and public beliefs interplay between each other. Each agent’s private belief
is given by his type and determines the way the agent filters out information from past
observed market outcomes. This is an individual trait of the agent. In addition, each
investor is influenced by his neighbors and he has incentives to conform to his friends’
patterns of behavior. In the presence of such peer pressure, an agent formulates his public
opinion by averaging his friends’ beliefs. There is a large body of literature on the subject
of peer effects in different areas, such as economics, sociology, education and crime. One
challenge is how to capture such social influence. I choose a simple average of friends’
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beliefs for simplicity but the model accomodates other sorts of weighted averages. For
instance, one alternative is De Groot Learning (DeGroot (1974)), in which each agent has
a social influence weight.

The timing of the model is as follows. At the beggining of each period and using last-
period observations, agents update private (initial) beliefs based on their forecast error.
Then, agents share private beliefs with others who are part of their neighborhood and
update their beliefs according to the weight their linkages imply. This results in investors’
public beliefs. At the end of the period, equilibrium is determined by agents exchanging
stock holdings and, since the stock market is perfectly competitive, the agent with the
highest public belief holds the asset and determines it price.

I show that, because agents formulate and share beliefs about asset price, the equilib-
rium is then determined by investors’ expectations. Differently from Adam et al. (2016),
equilibrium price is a function of only the most optimistic agent’s belief, defined as the
one with the highest public belief.The only sources of heterogeneity among agents con-
cern their perception about future stock-market behavior and who they are connected to.
Since the stock market is perfectly competitive, in equilibrium the asset is held by the in-
vestor who is willing to pay the most for it which is precisely the agent with the highest
expectation about asset price growth.

The model gives rise to a feed-back loop between beliefs and realized price, resulting
in booms-and-busts phenomena of the price-dividend ratio. When asset price is increas-
ing, both types expect it to keep increasing, what feeds back into a higher equilibrium
price. This further increase in price makes agents revise beliefs upwards again, and real-
ized price is again higher, and so on. The reverse holds during a bust. This self-referential
aspect is similar to Adam et al. (2016). However, in my model the extent and frequency of
booms and busts depend on the social network. I also obtain different behavior of agents’
public beliefs which is a function of their network structure.

I show that booms episodes are determined by agents with more social connections to
inexperienced investors. When price is increasing, and given that inexperienced agents
are more reactive, H-type initial beliefs are higher than L-type beliefs. Thus, agents who
interact more with inexperienced investors become more optimistic and so have higher
public beliefs. The contrary holds during busts, marked by experienced agents being
more optimistic. The periods inbetween boom and busts, referred as ‘recovery periods’,
are characterized by the stock price staying around its mean value and experienced agents
are the most influential, since H-type beliefs become too pessimistic after a bust.
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The importance of modeling information sharing as weighting neighbors’ beliefs is
two fold. First, it captures the network structure. Second, equilibrium is a function of
private beliefs. Even though only the most optimistic agent determines asset price, his
public belief is a combination of others’ beliefs who are socially linked to him. Hence,
the fluctuations of the PD ratio hinge on the existence of correlated movements in agents
beliefs and the social effects agents are exposed to.

I find that the structure of the social network matters for asset price fluctuations and
price-dividend volatility. More connected networks exhibit less volatile price-dividend
ratio and booms and busts episodes last for longer periods. At the same time, in such
structures there is less dispersion in public beliefs and the average price realization is
higher. Nonetheless, if agents of the same type are more connected to each other, stock
market price fluctuates more and booms and busts have shorter duration.

I also evaluate the quantitative performance of the model by simulating the economy
with different network structures. As Adam et al. (2016), I find that the model can repli-
cate key empirical facts, specially the high volatility of the PD ratio and excessive return
volatility. The equity premium puzzle, which they have difficulty in matching, I cannot
also fully replicate. Overall, my model can account approximately half of the observed
equity premium, what is slightly above Adam et al. (2016)’ finding. Due to the lack of
data, I am not able to confront simulation results with other countries’ stock market, such
as Japan and te Euro-Area. Nonetheless, Adam et al. (2010) report evidence that these
countries, even though they all have experienced boom and busts, the frequency and tim-
ing of these cycles, as well as the variation of the PD ratio differ across them. I argue that
one of the many reasons of why this is the case is their different social structures. I see
this as a next research avenue.

As a final exploration, I relax the assumption of the social network being exogenously
determined. I use a random graph approach, widely used in the network literature
(Jackson and Wolinsky (1996), ERDdS and R&wi (1959)), to infer what network would
emerge if the only knowledge one has is the probabilities of agents to connect with each
other. I investigate the impact of homophily (Golub and Jackson (2012)) in stock market-
equilibrium, that is, I assume agents of the same type tend to share more connections. I
assume the network structure is captured by the homopholy index and that equilibrium is
then a function of homophily and private beliefs. I find that asset price volatility and the
frequency of booms and busts are positively related to homophily, whereas the duration
of such episodes is negatively related.
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I provide a simple way to introduce social interaction into a standard asset pricing
model. The results show that stock market outcomes - namely, equibilibrium asset price,
price-dividend behavior and agents’ subjective beliefs - are all dependent on the under-
lying network topology. To my knowledge, this paper is the first to combine adaptive
learning and social networks in the asset pricing literature. For instance, research on
asset pricing and learning, in which Adam et al. (2016) fits in, has not yet incorporate
any form of social dynamics or information sharing. Meanwhile, stock market models in
information networks such as Ozsoylev and Walden (2011) and Xia (2007) all share the
standard rational expectations assumption. Thus, this paper can serve as an initial step
to better comprehend the interdependency of the stock-market behavior and the social
structure of the economy.

Related Literature: My work relates to two fields of ongoing research about stock market
behavior: adaptive learning and asset pricing in networks.

Under the adaptive learning literature, agents learn about stock prices. The under-
lying main hypothesis is that agents are not ‘perfectly rational’ in the sense of rational
expectations (RE) but instead do not know exactly the pricing function that governs asset
price and so they take rational decisions given the information they are assumed to pos-
sess. Adam and Marcet (2011) are the first to provide a microfoundation for these models
and introduce the concept of ‘internally rational’ agents who maximize discounted ex-
pected utility under uncertainty given dynamically consistent subjective beliefs about the
future. They study a simple asset pricing model with risk-neutral investors and show
that learning about price behavior affects market outcomes, while learning about the dis-
counted sum of dividends, the case under RE, is irrelevant for equilibrium prices.

In this same line, Adam et al. (2016) study a simple variation of the Lucas Jr (1978) as-
set pricing model in which agents hold subjective prior beliefs about risk-adjusted price
growth. They show that internally rational agents update their beliefs about stock price
behavior using observed stock price realizations. The setup gives rise to a model charac-
terized by large asset price fluctuations and volatile price dividend ratio. They are able
to replicate some stylized facts of U.S. stock price data that previous RE models have not
been able to account for. Namely, the high persistence and volatility of the price-dividend
(PD) ratio; high volatility of stock returns; and the predictability of long-horizon excess
stock returns. As they explain, these results arise because there is a momentum of changes
in beliefs around the RE value and a mean-reverting behavior of beliefs. Nonetheless,
their model fail to reproduce the observed equity premium under reasonable degrees of

5



risk aversion.
My model introduces an additional dimension to Adam et al. (2016). I let investors

be heterogenous in their beliefs about asset price behavior and assume the existence of
a social network connecting all agents. Given their linkages, agents are able to commu-
nicate and share individual beliefs about risk-adjsuted price growth. In this sense, the
present framework captures how different stock price expectations and social interaction
can affect equilibrium asset pricing outcomes and agents market behavior.

The asset pricing literature has documented the relevance of heterogeneity and social
interaction among investors as influential to observed stock market outcomes. Vissing-
Jorgensen (2003) surveys evidence on the stock market behavior and actions. She doc-
uments that an investor’s belief about future stock-market returns depends on the in-
vestor’s own experience measured by age, years of investment experience, and own past
portfolio returns. She shows that expected returns are higher for those with low invest-
ment experience for a given age than for those with more years of experience. The evi-
dence also suggests that investor beliefs do affect their stockholdings, and she concludes
that that understanding beliefs is in fact useful for understanding prices.

Adam et al. (2010) report evidence that different stock-markets historically experi-
enced substantial and sustained price increases that were followed by sustained and long
lasting price reversals. They show time-series data for the U.S., Japan and the Euro-Area
since 1970 and all markets present PD ratio booms and busts. However, the frequency
and timing of these cycles, as well as the variation of the PD ratio differ across them. I
argue that one of the many reasons of why such pattern of the PD ratio is different among
those countries can be their social structure.

My work also fits in the strand of research about asset pricing in networks. Ozsoylev
and Walden (2011) study the impact of the properties of information networks on asset
pricing in a rational expectations equilibrium model. Agents communicate information
to each other about asset payoffs according to an exogenous information networt and
each agent has some information about her network neighbors payoff-related informa-
tion. They provide closed form solutions and find that aggregate properties of the mar-
ket - for example, price volatility, expected trading profits and agent welfare - are non-
monotonic functions of network connectivity. Hong et al. (2005) use U.S. data on mutual
fund holdings from the late 1990’s and find that a mutual fund manager is more likely to
buy (or sell) a particular stock in any quarter if other managers in the same city are buying
(or selling) that same stock. They argue that this can be seen as the result of an epidemic
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model in which investors spread information about stocks to one another by word of
mouth. However, their work is purely empirical and they do not estimate the underlying
network per se. Xia (2007) develops an strategic rational expectations asset pricing model
with one-way direct and truthful information transmission in circle and star networks.
He finds that several aggregate market outcomes, including trading volume and price
volatility, are all higher with communication than without.

The aforementioned studies share the same underlying assumption of rational expec-
tations, which essentialy means that all agents have perfect knowledge about the pricing
function that maps fundamentals to asset price. On the contrary, the agents in my model
are ‘internally rational’ and hold a perceived law of motion for asset price while the real-
ized price derives from an actual (’true’) law of motion.

The role of communication, and more broadly social interactions, through social net-
work in economic models has been recognized in other fields. Bala and Goyal (1998) show
that communication in social networks play a major role in technology adoption. Baner-
jee et al. (2013) show, theoretically and empirically, that information diffusion influences
people’s adoption decision, in their case, in the participation of a microfinance program.
Golub and Jackson (2012) explore how the speed of convergence of agents behaviors and
beliefs depends on network structure. DeMarzo et al. (2003) consider the spread of in-
formation across a given network when individuals are subject to persuasion bias and
show that agents with particular network positions can have disproportionate influence.
Jackson (2010) presents a textbook on network economics.

I contribute to the stock-market behavior literature by aligning adaptive learning and
social interaction. I introduce a simple model of communication among socially con-
nected investors in an otherwise stadard asset pricing model where agents learn about
prices. I derive the equilibrium outcomes of the model as a function of the communica-
tion strucutre. Also I quantitatively evaluate its perfomance to show that the model can
replicate the observed asset market booms and busts and that the characteristics of such
cycles vary considerably depending on social network.

The paper is organized as follows. Section 2 presents the model and Section 3 de-
fines the equilibrium. Section 4 discusses agents’ learning problem. Section 5 outlines the
solution of the model and characterizes agents’ behavior. Section 6 explores the implica-
tions for asset price dynamics. Section 7 discusses equilibrium as a function of network
characteristics. Section 8 presents the results of simulating the model. Section 9 extends
the model to the case with an unkown network structure. Section 10 concludes. The
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Appendix contains omitted proofs and discussions.

2 A Network Asset Pricing Model

I introduce an extended version of the model studied by Adam et al. (2016). It is
a Lucas Jr (1978) asset princing model in which agents hold heterogenous prior beliefs
about stock price behavior and are a part of an exogenously given social network. Those
who are socially connect share beliefs. The information sharing is truthfull and credible
(agents commit not to lie), and agents do not act stratigically towards price manipulation
in ones’ favor.1 Agents are susceptible to peer effects from those thet are connected to.

2.1 Model Enviroment

Consider a discrete-time economy with a large number of N of infinitely-lived agents
trading one unit of stock in a competitive stock market. At each period a stock yields a
stochastic divend Dt and investors receive an exogenous endowment Yt, both in the form
of perishable consumption goods.

Given Yt and Dt, aggregate consumption is such that economy’s feasibility constraint
holds: Ct = Yt +Dt.

The exogenous processes for dividends and aggregate consumption are, respectively

Dt

Dt−1
= aεdt , logεdt ∼ii N (−

s2d
2
, s2d) (1)

Ct

Ct−1
= aεct , logεct ∼ii N (−s

2
c

2
, s2c ) (2)

where a ≥ 1 and logεdt , logε
c
t are jointly normal. Let ρ = E

[
(εct+1)

−γεdt+1
]
= exp

(
γ(1 +

γ) s
2
c
2

)
exp

(
−γρc,dsc, sd

)
.

There are two types of investors K = {h, l}: inexperienced (H) and experienced (L).
Types differ in their private expectations about the behavior of future stock prices: H−agents
have more volatile private beliefs than L−agents.2 This characterization is motivated by

1That is, agents do not wish to formulate beliefs in order to influence price in such a way to make them
hold asset in equilibrium.

2I further disucss the characterization of types in Section 4

8



Adam et al. (2015), who documented evidence that investors with less stock market expe-
rience are more heavily influenced by recent asset price realizations than those with more
years as traders.

The investment problem

The risk-averse and internally rational agents have standard time-separable consump-
tion preferences. Investor i ∈ N of type k ∈ {h, l} chooses consumption Cik

t , bonds Bik
t and

stock holdings S ik
t in order to maximize expected future utility3:

max
{Cik

t ,S ik
t ,Bik

t }∞t=0
Eik
0

∞∑
t=0

δt
(Cik

t )1−γ

1−γ
(3)

S ik
t Pt +Cik

t +Bik
t ≤ S ik

t−1(Pt +Dt) + (1 + rt−1)B
ik
t−1 +Yt (4)

where γ ∈ (0,∞) is the coefficient of relative risk aversion; rt−1 is the real interest rate
on riskless bonds issued in period t − 1 and maturing in period t; and Ei

0 denotes agent’s
subjective probability space that assigns probabilities to all external variables Pt,Dt,Yt.

Initial endowments of individual stock holdings and bonds are S ik
−1 = 1,Bik

−1 = 0. To
avoid Ponzi schemes and to guarantee a solution to the problem, assume the following
bounds hold, ∀i ∈N,k ∈ K :

S ≤ S ik
t ≤ S̄ (5)

B ≤ Bik
t ≤ B̄ (6)

with S̄, B̄ <∞, S < 1 < S̄ and B < 0 < B̄.
Below I will specify agents’ subjective probabilities by a learining scheme describing

their view about the evolution of (Yt,Dt, Pt). Differently from what is implied by the RE
assumption, these subjective probabilities may or may not coincide with the true proba-
bilities governing the behavior of those variables.

Agent’s optimal choices are given by the first order conditions of his utility maximiza-
tion problem:

3For simplification, I assume agents have the same discount factor δ and coefficient of relative risk aversion
γ .
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(Cik
t )−γPt = δEik

t

[
(Cik

t+1)
−γPt+1

]
+ δEik

t

[
(Cik

t+1)
γDt+1

]
(7)

(Cik
t+1)

−γ = δ(1 + rt)E
ik
t

[
(Cik

t+1)
−γ

]
(8)

As in Adam et al. (2016), I assume agent’s individual income Yt is high enough and
that expected future PD ration is bounded.4

Given the individual maximization problem above, assume agents’ private wealth Yt
is sufficiently large and that Eik

t
Pt+1
Dt

< M̄ for all i,k and for some M̄ <∞, such that individ-

ual consumption choices can be approximated by the aggregate consumption: Cik
t+1

Cik
t
≈ Ct+1

Ct

Hence, the first-order conditions boil down to

(Ct)
−γPt = δEik

t

[
(Ct+1)

−γPt+1
]
+ δEi

t

[
(Ct+1)

γDt+1

]
(9)

(Ct+1)
−γ = δ(1 + rt)E

ik
t

[
(Ct+1)

−γ
]

(10)

Define subjective expectations of risk-adjusted stock price growth and dividend growth
to be, respectively

βik
t ≡ Eik

t

[(
Ct+1

Ct

)−γ
Pt+1
Pt

]
(11)

βd,ik
t ≡ Eik

t

[(
Ct+1

Ct

)−γ
Dt+1

Dt

]
(12)

Stock holdings first-order condition (9) can then be written as

Pt = δ

(
Ct+1

Ct

)γ
Eik
t

[
Pt+1 +Dt+1

]
= δβi

tPt + δβd,ik
t Dt (13)

RE as a special case

When one assumes agents know the exact mapping from both exogenous processes
(Dt,Yt) into equilibrium asset pricing Pt(Y t,Dt), beliefs and equilibrium are given by

4This is the Assumption 1 on Adam et al. (2016). Please refer to it for further details.
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βik
t = βd,ik

t = βRE ≡ a1−γρ (14)

Pt =
δβRE

1− δβRE
Dt (15)

Hence, under RE, beliefs about both risk-adjusted price growth and divdend growth
are constant and so it is the price-dividend (PD) ratio. Asset price follows the same
stochastic process as dividend and the PD ratio is constant.

2.2 Types’ Private Beliefs

In order to focus on subjective expectations of stock market price, I endow agents
with perfect knowledge of risk-adjusted dividend growth, that is, all agents hold rational
expectations about these dividend processes:

βd,ik
t = βRE ∀i ∈N,k ∈ K,∀t (16)

Agents also know the consumption stochastic process. However, they do not know
how the equilibrium asset pricing function and they must formulate beliefs about risk-
adjusted price growth at every period. This implies that each agent has a subjective (and
possibly different) view about the price dividend ratio at each period.

Heterogeneity is characterized by different types having different private beliefs. That
is, βik

t = β
jk
t for i , j,∀t and βik

t , β
jk′

t for i , j,k , k′,∀t. Denote beliefs of inexperience
and experience agents, respectively, as βh

t and βl
t .

2.3 The Social Network

Investors are located in an exogenously given network G of N nodes, each represent-
ing an agent. The relation E ⊂ N ×N describes which investors are connected in the net-
work. (i, j) ∈ E means there is an edge (link) between agents i and j. I assume connections
are bidirectional, Eij = Eji , so that E is symmetric.

The distance between two agents i and j is represented by a function dE(i, j), which
defines the number of edges in the shortest path between agents i and j. I use the conven-
tion that dE(i, j) =∞ if there is no path between the two agents. An agent neighborhood
Nik is set of his closest nodes: Nik = {j : dE(i, j) = 1}. I shall refer to a node in an agent’s
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neighborhood as a friend. The degree of investor ik is defined as the investor’s number
of neighbors, including himself: Dik = |Nik |.

2.4 Social Dynamics

The main concern of this paper is to explore the effects of the network structure in
stock market price behavior. Investors are susceptible to social influence. They exchange
information about asset price through direct communication with those they are linked
to. Agents conform with their peers and so revise private beliefs after social interaction.

At the beggining of each period, each agent ik updates his type-specific private belief
βk
t , k = {h, l}. Then, he interacts with others who belong to his neighborhood Nik. Let

the weight an investor ik assigns to type-H private beliefs βh
t be λi and the one of type-

L beliefs βl
t be (1 − λi). Intuitivelly, λi captures the social influence of different types in

investor ik’s behavior. λi is a function of the investor’s social network, not of his type k,
and it is determined by the proportion of inexperienced friends he has:

λi =
∑
j∈Nik

1{j =H}
Di

=
Dh
i

Di
(17)

where Dh
i = {#H friends}. Notice that λi accounts for investor’s own type (self-loop).5

After communication, agent formulates a public belief by averaging their neighbors’
expectations. Hence, at the end of each period agent’s risk-adjusted price growth belief is
given by

β̃i
t = λiβh

t + (1−λi)βl
t ∀i ∈N,k ∈ K (18)

β̃i
t is agent ik’s public belief. Differently from his private belief, β̃i

t depends on the
investor’s set of friends, and not so much on his own-type. To make this point clearer, the
superscript i from βk

t , and the supersript k from β̃i
t are dropped.

Social dynamics is then incur peer effects and agents hold certain public beliefs be-
cause their friends do so. The challenge of the model is then how social interaction and
influence affect stock price behavior.

5The λi measure includes agent’s own type to capture the idea that individual beliefs matter. So that agents’
subjective expectations are not solely determined by who they are connected to but also depends on they
own type.
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3 Equilibrium

Since agents have heterogenous beliefs and do not hold rational price expectations, the
stochastic process for equilibrium price is different from agents’ perceived price process.
The latter is given by individual stock-holdings first-order condition (13). Since the asset
market is perfectly competitive, agents exchange stock holdings and the the asset is held
by the agent who is willing to pay the most for it. Hence, equilbrium is determined by
the marginal agent who holds the most optimistic public belief β̃i

t ..
6

Denote the most optimitic’s subjective belief about risk-adjusted stock price growth as

β̃o
t =max

i∈N
β̃i
t (19)

The equilibrium pricing function is then7

Pt =
δa1−γρ

1− δβ̃o
t

Dt (20)

where a1−γρ ≡ βRE = βd
t , ∀t. This equation implies that agents’ beliefs explicity de-

termine equilibrium price. Asset price is increasing in both subjective expectations about
risk-adjusted price growth and dividend growth.

For realized price to be well-defined at all periods, for any set of beliefs, I impose the
existence of a maximum price-dividend value. This is justified by the fact that PD ratio
will be bounded in equilibrium and it is consistent with the behavior of internally rational
agents, and with asset pricing data..8

There exists a maximum equilibrium price-dividend ratio ¯PD <∞.

4 The Learning Problem

In order to formulate subjective beliefs about the stock price behavior, investors make
use of two learning channels. Firstly, they use last-period price and dividends observa-

6Adam and Marcet (2011) extensively discuss this result under a similar framework. Please refer to them
for more details.

7To see this, I can write

Pt =max
i∈N

[
δEi

t

(
Pt+1 +Dt+1

)]
and substitute out for β̃ot .

8See the disucssion under Adam and Marcet (2011) and Adam et al. (2017).
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tions applied to Bayesian filtering techiniques to infer about realized stock market out-
comes. Secondly, they share beliefs with their friends.

The former channel pins down private beliefs βk
t , while the later determines public

beliefs β̃i
t . Social interaction has been introduced in the previous section, and to close up

the model the individual learning scheme is specified below.
Recall that private beliefs are a function of agents’ type and so there are as many

βk
t as existing types in the economy. Each type, and therefore agent, perceives that the

process for risk-adjusted stock price growth is the sum of a persistent component bkt and
a transitory component εkt ,

(
Ct

Ct−1

)−γ
Pt
Pt−1

= bkt + εkt (21)

bkt = bkt−1 + ξk
t (22)

for k = h, l where εkt ∼ii N (0,σ2
ε,k) and ξk

t ∼ii N (0,σ2
ξ,k), such that σ2

ε,h > σ2
ε,l and σ2

ξ,h >

σ2
ξ,l .

Let types’ prior beliefs bk0 be centered around the RE belief9

bk0 ∼ii N (a1−γρ,σ2
0,k)

βh
0 = βl

0

σ2
0,k =

−σ2
ξ,k +

√
(σ2

ξ,k)
2 +4σ2

ξ,kσ
2
ε,k

2

(23)

where σ2
0,k is the steady-state Kalman filter uncertainty about bkt for k = h, l. Type’s

posterior belief at any time period t is distributed as

bkt ∼N
(
βk
t ,σ0,k

)
∀k = h, l (24)

where σ0,h > σ0,l .
To learn about asset price growth, agents act as Bayesians and optimality filter out the

persistent component bkt . Posterior beliefs are then given by

9Following Adam et al. (2016), our framework constitute a small deviation from the RE case.
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βk
t = βk

t−1 + g i
[(
Ct−1
Ct−2

)−γ
Pt−1
Pt−2
− βk

t−1

]
(25)

gk =
σ2
0,k + σ2

ξ,k

σ2
0,k + σ2

ξ,k + σ2
ε,k

(26)

where gk is the optimal Kalman gain and reflects how the type reacts to his forecast

error ekt−1 ≡
(
Ct−1
Ct−2

)−γ
Pt−1
Pt−2
− βk

t−1. Comparing types learning scheme, H-agents update more

heavily their beliefs at each period and have more volatile expectations .
This setup means that both βh

t ,β
l
t constitute a small deviation from RE beliefs in the

limiting case with vanishing uncertainty about the persistent component bt (σ2
0,k→ 0,∀k).

In such scenario types share the same belief which converges in distribution to βRE . How-
ever notice that RE beliefs are never actually attainable and agents are consistently wrong
on predicting price growth.

5 Solving the Model

It is important to keep in mind some important features of the model i) agents are
internally rational and, at every period, make inferences about the stock market behav-
ior by formulating subjective risk-adjusted stock price growth beliefs; ii) at each period,
agents’ learning problem consists of two stages: an individual Kalman filter problem that
pins down private beliefs (type-specific) βk

t ; and communication, which pins down pub-
lic specific (agent-specific) β̃i

t ; iii) equilibrium price is determined by the most optimistic
agent, defined as the agent with the highest public belief β̃o

t .
Henceforth, the model timeline is:

1. at t, last-period beliefs βi
t−1, β̃

k
t−1 for i ∈N , k = h, l are determined and agents observe

realized price Pt−1 and dividends Dt−1;

2. still at t and using past price observations, each type solves its learning problem by
applying Kalman filtering techniques. This pins downs time t private beliefs βh

t ,β
l
t .

3. then and still at t, agents communicate and public beliefs are set: β̃i
t ,∀i ∈N ;

4. at the end of period t, equilibrium price Pt is determined by the most optimistic
agent: β̃o

t ;
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5. at t +1, this process is repeated.

Notice that agents beliefs βk
t , β̃

i
t are predetermined at time t, so that the economy

evolves according to a uniquely determined recursive process: the market-clearing price
for period t is determined given time t beliefs; then in the next period t + 1, beliefs are
updated following this observation, communication takes place and t+1 PD ratio is real-
ized.

Even though the most optimistic agent sets price, both types’ private beliefs βk
t , k = h, l

directly impact equilibrium PD ratio. This is a novelty introduced by this framework
compared to the baseline model studied by Adam et al. (2016). Communication plays
an important role since it determines the extent of each type’s influence on realized risk-
adjusted stock price growth: the type-belief with a higher weight (λi or 1−λi) will have
a higher impact on the price-setting equilibrium belief.

Solving the model consists on basically two stages, which are mutually influential:
1) the Kalman filter problems, which deliver βh

t ,β
l
t - this is essentially what Adam et al.

(2016) do and I refer to them for the details of the results; 2) determine equilibrium weight
λ∗t, which delivers equilibrium beliefs and price β̃o

t (λ
∗
t), Pt(λ

∗
t) - this is done by analyzing

the network structure.

5.1 First Stage: Individual Learning Problem

The individual learning problem entails different evolution of belief depending on
agent’s type. In order to study the dynamics of the model it is then crucial to know how
beliefs change through time and how distinct are these processes.

Bounded Beliefs

First-order condition (13) implies that subjective private beliefs must be bounded:
to guarantee a solution for individual opimization problem it must hold that10 βk

t <

δ−1 ∀k, t. Intuitively, private beliefs must not be too optimistic. Overly optimistic beliefs
can give rise to a situation where subjective expected utility is infinite, so that problem
agents’ first order condition does not have a well defined solution. In turn, bounded be-
liefs guarantee the existence of a finite equilibrium PD ratio. Denote beliefs’ upper bound
by βU

k .

10To see this notice that if βkt = δ−1, then δβREDt = 0 which means there exists infinetely-many solutions to
the first-order contion. On the other hand, if βkt > δ−1, then δβREDt < 0→Dt < 0 which cannot hold.
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For all i ∈ N , k = {h, l} and t with Pt < ∞,Dt < ∞,Ct < ∞, subjective expected risk-
adjused price growth is such that

βik
t < βU (27)

where βU
l = βU

h ≡ βU < δ−1.

Comovement of Beliefs

Intial beliefs βk
t are in a sense extrapolative expectations: if the stock market price has

been rising, investors expect it to keep rising; and if it has been falling, they expect it to
keep falling, that is, (

Ct

Ct−1

)−γ
Pt
Pt−1

> 1⇒ ekt > 0 ∀k, t

where the same holds for reversed inequalities.
As a result, types’ beliefs tend to comove and so either both experience and inexperi-

enced agents believe stock price to increase or to decrease. Although this same expected
qualitative change holds for most periods, the existence of an upper bound of beliefs im-
plies that there could be times in which agents revise beliefs in opposite directions. That’s
because, depending on the difference between types’ beliefs when PD ratio is approach-
ing its upper limit, the price drop initiated by βh

t is not enough to make realized price
growth to be below βl

t , resulting in elt > 0 and L-type increasing its belief. In general,
the comovement in beliefs holds as long as they are not sufficiently close to their upper
bounds βk

t << βU for k = h, l.
Regardless of its importance on shaping asset price behavior, the aforementioned case

depends on a fine set of parameter values and beliefs range, and I abstein from it for now.
For clarity, I impose the following assumption:

All agents, indepedently of their type, change their belief in the same direction. That
is, eht−1 > 0 if anf only if elt−1 > 0 ∀t. Hence, it must be that ∆βh

t > 0 if and only if ∆βl
t > 0

∀t. The same holds for reversed inequalities.

Forecast Errors

Firstly, intial beliefs updating equations (25) imply that agents revise βk
t ,∀k, t in the

same direction as the last forecast error: beliefs increase (decrease) if investors under-
predict (overpredict) risk-adjusted asset price growth. To infer about the magnitude of
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changes in beliefs one needs to compare realized and subjective price growth11:
(

Ct
Ct−1

)−γ
Pt
Pt−1
×

Ek
t

{(
Ct
Ct−1

)−γ
Pt
Pt−1

}
≡ βk

t .

Price equilibrium equation (20) shows that, for any equilibrium weight λ∗t, a higher
(lower) βk

t , k = h, l delivers a higher (lower) realized PD ratio. In abscence of further dis-
turbances, this increases (decreases) risk-adjusted price growth. However, realized price
growth will always strongly exceed the initial implied expected price growth. That’s be-
cause actual risk-adjusted price growth is a steeper function of beliefs and its subjective
expectations: when there is an increase in βk

t , equilibrium price growth increase by more
than 1 unit; the reverse holds for when subjective expectations decrease. This means that
|ekt | > 0.12

To be precise, when both agents hold the RE belief it is true that their forecast errors
will be zero. Since the focus of this paper is to consider deviations from rational expecta-
tions, I assume this scenario has probability zero of happening.

Forecast error across types differ. By the characterizion of experience and inexperi-
enced agents (see equations (22)-(25)), the latter has consistently more extrapolative be-
liefs and thus exhibits greater errors. Formally.13

Proposition 1. At any period, the forecast error of inexperienced investors (H) have greater mag-
nitude when compared to experienced’s (L) error: |eht | > |elt |. Since gh > g l , it holds then that

|gheht−1| > |g
lelt−1| ∀t (28)

In other words, difference in type’s reactions is suffciently high so that the absolute change in
beliefs of inexperienced agents is greater than the absolute change of experienced agents at every
period:

|∆βh
t | > |∆βl

t | ∀t (29)

Combining the previous Proposition 1 and Assumption 5.1, it is clear that agents agree
in which direction they will revise their beliefs to but disagree in the magnitude of this
change. The overall evolution of types’ beliefs βh

t ,β
l
t is such that, at every period, change

in beliefs are qualitatively the same but quantitatively different across types.

11I will use the term price growth meaning risk-adjusted price growth for simplicity.
12Proof in Appendix B.
13Proof in Appendix B
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5.2 Second-Stage: Social Interaction

After intial beliefs βh
t ,β

l
t are set, agents communicate with their neighbors and for-

mulate their end-of-period beliefs β̃i
t = λiβh

t + (1 − λ)iβl
t . Equilibrium price is then de-

termined by the agent(s) with the highest end-of-period belief β̃i
t , also referred to as the

most optmistic agent. Embodied in β̃o
t are equilibrium weights on type-specific beliefs

βh
t ,β

l
t denoted as λ∗t ,1−λ∗t, respectively. Therefore, equilibrium belief is given by

λ∗t =

maxi λi if βh
t > βl

t

mini λi if βh
t < βl

t

equilibrium weight (30)

β̃o
t = λ∗tβ

h
t + (1−λ∗t)βl

t equilibrium belief (31)

Notice that even though λ∗t changes over time, λi ’s are fixed. This is because the
network G is assumed to be exogenous and fixed. To determine equilibrium one must
know not only agents’ type but their location and neighborhood in the social network.
Besides agents’ degree of connectivity, the identity of one’s friends matter for pinning
down realized PD ratio.

Combining equilibrium equations (20), (30), (31) and belief updating equations (25),
realized risk-adjusted price growth is expressed as(

Ct

Ct−1

)−γ
Pt
Pt−1

= (aεct )
−γ

(
a+

aδ∆β̃o
t

1− δβ̃o
t

)
εdt (32)

6 Price Dynamics

Together, the existence of a maximum for the PD ratio and beliefs are going to be key
in giving rise to booms and busts in stock market asset price. Realized price and beliefs
are consistently reinforcing each other and this constitutes a self-fulfilling mechanism that
magnifies asset price changes: if stock market price goes up, this price increase feeds into
investors’ expectations about future price changes, which leads them to push the current
price up even higher. This upward bid then makes realized asset price to increase further,
resulting again in investors pushing the current price still higher, and so on.

Consider a situation in which agents become optimistic, meaning they increase their
price growth expectations. This increase in expectations leads to an increase in the PD
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ratio, and consequently, realized price growth is greater and exceeds its initial expecta-
tions. The beliefs updating equations (25) then implies further upward revisions in price
growth expectations and thus asset price increases further. In abscence of any funda-
mental shocks, this process leads to a sustained asset price boom in which the PD ratio
and risk-adjusted price expectations jointly move upward. The price boom comes to an
end when equilibrium PD function (20) gets closer to its maximum. At this point, real-
ized price growth fails to fulfill agents’ expectations which in turn leads to a reversal in
the evolution of beliefs. Agents start to decrease their beliefs and the opposite dynamics
above is set in motion.

Hence, an upper pound in the PD ratio implicates the asset price boom must come to
an end. When this happen, price growth is compared to agents beliefs and such inconsis-
tency will shoot βk

t , k = h, l a very low value. Booms and busts are detailed discussed in
Section 66.2.

I examine the asset price behavior from three prespectives: PD ratio volatility, booms
and busts dynamics and agents’ disagreement. In order to focus in the extent of the
causality between PD ratio fluctuations and agents’ behavior, I abstein from major fluc-
tations on the dividend process. That’s to say that, even though it is true that a very
negative/positive dividend realization could cause a significant decrease/increase in as-
set price, I rule out this scenario.

6.1 Price-Dividend Volatility

It is straightforward to see that changes in how agents perceive the stock market con-
tributes to PD volatity. From equation (32), I have

V ar

(
ln

Pt
Pt−1

)
≈ V ar

(
ln

1− δβ̃o
t−1

1− δβ̃o
t

)
+ lnεdt (33)

Also, for a given λ∗t, equilibrium belief volatility is given by

V ar(β̃o
t ) = (λ∗t)

2V ar(βh
t ) + (1−λ∗t)2V ar(βl

t) (34)

Thus, changes in type-beliefs βh,βl results in higher volatility of equilibium beliefs β̃o,
what contributes to greater price growth variation and thus, to higher PD ratio volatility.
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6.2 Booms and Busts

I now show that a PD ratio boom and busts dynamics holds in the present framework
emerging from agents optimally learning about equilibrium price process and social in-
teraction. To begin with, suppose at time t investors expect a positive risk-adjusted price
growth, that is ekt−1 > 0, k = h, l. Then it holds that

βk
t = βk

t−1 + g i
[(
Ct−1
Ct−2

)−γ
Pt−1
Pt−2
− βk

t−1

]
⇒ βk

t > βk
t−1 ∀k = h, l

Both types’ private belief increases and since experienced agents are more reactive
to price growth observations βk

t > βl
t . Communication results in end-of-period beliefs β̃i

t

∀i ∈N and equilibrium is determined by λ∗t =maxi λi . Hence, realized PD ratio and price
growth are, respectively

Pt
Dt

=
δβRE

1− δβ̃o
t

=
δβRE

1− δ[λ∗tβh
t + (1−λ∗t)βl

t]

Pt
Pt−1

= [a1−γ (εct )
−γεdt ]

(
1− δβ̃o

t−1
1− δβ̃o

t

)
Since both βh

t ,β
l
t are greater than the respective last period beliefs, Pt > Pt−1 no matter

the identity of the most optimistic agent in the the previous period β̃o
t−1. At t + 1, ekt > 0

∀k, investors revise their beliefs upwards and asset price continues to increase. In the
aftermath, βh

t+s > βl
t+s for all s ≥ 1, equilibrium is pinned down by λ∗t+s = maxi λi , and

realized price growth is greater than one, increasing and exceeds subjective expectations
ekt−s > 0. Hence, a boom dynamics is in place in which future expectations and asset price
continues to increase, and the most optimistic agent is the one who has more inexperiend
friends.

Due to its greater reactivenes, H-type will be the ones firstly disappointed by price
realizations. As the PD ratio gets closer to its maximum value, equilibrium price growth
increase will fail to fulfill βh

t magnitude. At this point, H-expectation is bigger than re-
alized price growth which means they start revising beliefs downwards. Consequently,
price decreases and its drop is high enough to also make L-agents to revise their belief
downwards.14 A bust episode is in motion then.

The resulting price behavior is similar to what Adam et al. (2016) study but price

14This follows from Assumption 5.1
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realizations themselves differ since now communication is crucial for price setting and
both types influence equilibrium. Nonetheless, the main mechanism behind the evolution
of subjective risk-adjuted price growth beliefs is the same15 As they show, the individual
learning problem (21)-(26) results in beliefs βh

t ,β
l
t to stochastically oscilate the RE value

and their upper bound βU cannot be an absorbing point. This renders a momentum and
mean-reversion behavior into the PD ratio. I refer to them for the details and analytical
proofs of theses results.

The main difference between booms and busts is which type dictates equilibrium
price. Booms are characterized by inexperienced agents being more influential whereas
in busts experienced agents’ beliefs are the main driving source. These episodes impart
a high volatily of the PD ratio, in line with standard asset price evidences that motivate
this paper.

6.3 Recovery Periods

In the periods between booms and busts events and in asbecence of further distur-
bances, stock price return to its mean deterministic value and oscilate much less around
it. These recovery periods are marked by higher difference in private beliefs βh

t ,β
l
t such

that βl
t > βh

t .
To see why that’s the case, consider the bust following a boom. Stock price is con-

tinuosly decreasing and both types are revising beliefs downwards. H-type changes be-
lief more aggresively and so βh

t is smaller than L-type beliefs. Even when price start to
increase again this continues to be true because of how further down inexperienced in-
vestors have pushed their expectations. It takes some periods of underpredictions - that
is, ekt > 0 k = h, l - for βh

t to catch up with βl
t .

16 When that happens, the optimistic behavior
of investors has lead to such increase in asset price that a boom phase is in motion again.

The described stock price behavior implies that the speculative behavior of investors
is an important mechanism behind it. The expectation of more speculative investors
(here the H-type) influence others in the market and leads to a more rapidly increase/de-
crease in asset price, since beliefs are mutually reinforcing each other and realized price
growth. Communication then results in they sharing similar expectations in booms/-
busts episodes. When asset price returns to its mean behavior, beliefs differ more and the

15This follows because both model, ours and Adam et al. (2016)’s, share pratically the same individual
learning scheme (21)-(26).

16Proof in Appendix C
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experienced investors (L-type) are more influential in determining equilibrium price.

6.4 Duration of Booms and Busts

During a boom or a bust λ∗t remains unchanged.17 Let λ∗t = λ∗t−1 ≡ λ∗ The effect of the
social variable on risk-adjusted price growth is:

∂
(

Ct
Ct−1

)−γ Pt
Pt−1

∂λ∗
= δa1−γρt

[
(βh

t − βl
t)(1− β̃o

t−1)− (β
h
t−1 − β

l
t−1)(1− β̃

o
t )

(1− β̃o
t )2

]
(35)

The above is positive whenever asset price and agents’ expectations are increasing.,
and negative in the opposite case. During a boom phase, when price keeps getting bigger,
a higher λ∗ results in a higher realized price growth. Consequently, price grows faster the
higher is λ∗ and the duration of the boom is smaller. In a bust episode the same result
holds but a higher λ∗ implies a lower realized price growth which implies price falls
faster and the bust duration is also smaller.

Agents’ social network is determinant of the duration of booms and busts. The greater
the change in equilibrium belief between two periods the more intense (smaller duration)
will be a boom episode since price growth realizations will be greater, and, consequently,
the PD ratio function will get closer to its maximum quicker. Intuitively, when agents are
heavily influenced by their more speculative friends - that is, when λi are relatively big -
they incorporate more of the latter expectations into their end-of-periods beliefs β̃i .

These results also imply that the magnitude of boom/busts, that is the volatility and
maximum value of realized PD ratio, are also influenced by λ∗. A social network that
results in a higher maxi λi when price is increasing will have shorter boom and bust du-
rations, greater PD ratio volatility and higher PD ratio maximum.

Finally, the change in equilibrium beliefs ∆β̃o
t is also a function of the communication

varible. During a boom or bust episode,it holds that

∂∆β̃o
t

∂λ∗t
= (βh

t − βh
t−1)− (β

h
t − βl

t−1)

> 0 if ekt > 0

< 0 ekt < 0if
(36)

Hence, during a boom (bust) equilibrium belief change is is greater (smaller) the big-
ger is λ∗t, and consequently the higher is realized PD ratio.

17See equation 27. Booms are characterize by βh > βlt and so λ∗t =maxi λi for all in its duration. The reverse
holds for a bust:βh < βlt and so λ∗t =mini λi
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Keep in mind that λi gives how agents are proportionally connected to inexperienced
investors and λ∗t is simple the maximum or minimum λi depending whether price is in-
creasing or not. A higher λi means that an agent has relatively more H-friends. Since in
booms episodes H-type private belief βh is always higher than the L-type one, a higher
λi (and consequently λ∗t) results in a higher weight to those greater belief βh

t and so equi-
librium price will be greater. However, if λ∗t is relatively small, a greater weight in equi-
librium price is given to the smaller belief βl

t and that’s why realized PD ratio will be
comparatively smaller. The same reverse reasoning holds for when price growth is below
one.

7 Equilibrium and Network Topology

As discussed above, agents’ degree and the network strucure are determinant of equi-
librium prices and the characterization of booms and busts. To study price dynamics, I
need to know for any agent at any point of time his type-belief βi,k

t and his social structure
λi . To know λi , all agents’ type ik ∀i ∈N , their neighboors and these later identities jk ∈Ni

must be known. Therefore define the state of each agent as xi = (ik ,D
h
i ,D

l
i ) where i’s de-

gree is Di = Dih +Dil . Let the total degree of i be the actual number of friends of he has,
D̄i =Di −1. Given individual states I can infer the stock market equilibrium outcome and
price behavior. A natural outcome of our model is then an algorithm to compute agents’
set of final beliefs and asset price outcomes (risk-adjusted price growth, price-dividend
ratio, stock return) for a given parametrization.

Next I present some simple examples of network graphs and how much information
about asset price behavior I can get out of their structure.

7.1 Some Useful Examples

Consider four different networks structures: a tree, a complete network, a star and
a circle. Apart from this, the economy is exactly the same in all of them, namely, equal
shares of H and L agents.

Graphicaly, H nodes are colored in red and L nodes in blue. I report network mean de-
gree, individual state, nodes’ communication variable λi and equilibrium belief equation
β̃o
t .
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Tree

1 2 3 4

E(di) =
3
2

x1 = (H,1,1), x2 = (L,1,3), x3 = (L,0,3), x4 = (L,0,3)

λ1 =
1
2
, λ2 =

1
3
, λ3 = 0, λ4 = 0

et−1

> 0 λ∗t = λ1→ β̃o
t = β̃1

t = βht +β
l
t

2

< 0 λ∗t = λ3 = λ4→ β̃o
t = β̃3

t = β̃4
t = βl

t

In a tree network, there is always two agents with just one link (those at the end
poitns) and all the reamining nodes have total degree equal to 2. This is a network with
a few connections. In general, for any network size N and any social structure (types
and neighboords), there will be only three possible values for end-point nodes’ weights
λi = {0,1/2,1}, also three possible λi for nodes with degree 2: for H-type nodes λi =

{1/3,2/3,1} and for for L-type nodes λi = {0,1/3,2/3}. Hence end-of-period beliefs β̃i
t do

not vary greatly across agents.
In the above example, equilibrium price is given either by agent 1 - when asset price

is increasing - or by agent 4 - for decreasing price.

Circle

1 2

3 4

E(di) = 2

x1 = (H,1,2), x2 = (L,1,2), x3 = (L,1,2), x4 = (L,0,3)

λ1 =
1
3
, λ2 =

1
3
, λ3 =

1
3
, λ4 = 0

et−1

> 0 λ∗t = λ1 = λ2 = λ3→ β̃o
t = β̃1

t = β̃2
t = β̃3

t = βht +2β
l
t

3

< 0 λ∗t = λ4→ β̃o
t = β̃4

t = βl
t

In a circle network, all agents have the same total degree of order 2 and this is also
a network with a few connections. The set of values of λi is limited regarless the size of
the network: for H-type nodes λi = {1/3,2/3,1} and for for L-type nodes λi = {0,1/3,2/3}.
Hence end-of-period beliefs β̃i

t not dot vary greatly across agents.
In the example, it is clear that most agents sharethe same communication structure λi ,

regardless of their types.
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Complete

1 2

3 4

E(di) = 3

x1 = (H,1,3), x2 = (L,1,3), x3 = (L,1,3), x4 = (L,1,3)

λ1 =
1
4
, λ2 =

1
4
, λ3 =

1
4
, λ4 =

1
4

λ = λ1 = λ2 = λ3 = λ4

λ∗t = λ→ β̃o
t = β̃t =

βh
t +3βl

t

4
∀et−1, t

The complete graph is characterized by all agents beign connected to one another. Be-
cause of this, they share the same degree of order N−1. In fact, λi is the same across agents
and periods. Hence there is just one possible constant value for equilibrium weight re-
gardless of price behavior. This implies that end-of-period beliefs β̃i

t are the same for all
investors and I can think of this as a case of an representative agent with belief character-
ized by λ∗.

The graph above illustrates the aforementioned characteristics: the degree of all nodes
is 3 and λ∗ = 1/4.

Star

1

2

3

4

E(di) =
3
2

x1 = (H,1,1), x2 = (L,1,3), x3 = (L,0,2), x4 = (L,0,3)

λ1 =
1
2
, λ2 =

1
4
, λ3 = 0, λ4 = 0

et−1

> 0 λ∗t = λ1→ β̃o
t = β̃1

t = βht +β
l
t

2

< 0 λ∗t = λ3 = λ4→ β̃o
t = β̃3

t = β̃4
t = βl

t

In a star network, all nodes have just one link except for the center which has total
degree of (N −1). Thus, there are infinetly-many possible λ∗t realizations since the center’s
weight will depend on the size and strcuture of the network. For the end-nodes, there
are just three possible values for λi = {0,1/2,1} and depending on the center’s type this
set of values actually gets smaller: if the center is of H-type, λi = {1/2,1} and if it is of
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L-type λi = {0,1/2}. Even though the center has the most connections, it will never be
the unique optimistic agent: eitheir its λi is not a maximum/minimum or it is equal to at
least another node’s λi .

The example shows that since the center is an experienced agent, equilibrium is al-
ways given by the low-degree (equal to 1) nodes: when price is increasing, λ∗ is from
agent 1 , and when price is decreasing λ∗ is given by agents 3 and 4.

7.2 On a Generic Network

Comparing events of a continuum increase and decrease of stock market price under
the networks examplified above enable us to draw some conclusion of price dynamics
as a function of the network structure.18 For a given proportion of H and L agents in
the economy, a more connected network results in lower disagreement - the dispersion
of end-of-period beliefs β̃i

t across agents - and lower PD ratio volatility. In turn, in such
social structure boom and bust episodes exhibits less strength - in terms of the magnitude
of price increase - and last for longer periods.

That’s because high connectivity increases the probability of different types sharing
more linkages. Also, agent’s type are less relevant the higher the mean degree. In the
limit of a fully connected network, equilibrium communication weight λ∗t is constant and
the same across agents. Equilibrium price is then determined solely by the proportion of
H and L nodes in the economy.

The following proposition summarizes this discussion.

Proposition 2. Consider a network (G,N ) with Nh inexperienced investors and Nl experienced
ones. Denote the individual degree of a type k = {h, l} node as Dik. The following are true:

• in the case G is fully connected, λi = λ∗t =
Nh
N for all periods t, and all agents regardless of

their type.

• If E(Dih) > Nh − 1, then P rob(λ∗t = 1) = 0. On the other hand, if E(Dih) ≤ Nh − 1, then
P rob(λ∗t = 1) = 1

(Nh−1)Nl
.

• if E(Dil) > Nl − 1, then P rob(λ∗t = 0) = 1. On the other hand, if E(Dil) ≤ Nl − 1, then
P rob(λ∗t = 0) = 1

(Nl−1)Nh
.

• as long as Dik > Nk − 1, λi , {0,1} ∀i ∈N . Moreover, λih ∈ [ 1
Nh

,1) and λil ∈ (0, 1
Nh

].

18Refer to appendix D for a detailed comparison of these examples.
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As long as there are no agent only connect with others of its type, λi , {0,1} ∀i and so
high network connectivity results in lower equilibrium weight λ∗t at any period such that
λ∗t ∈ {0,1}. In such case, investors of different types are more connected and thus share
more beliefs. This is captured by weighting beliefs similarly, that is a low λi .

8 Simulation

To evaluate the quantitative potential of the model on replicating the relevant empiri-
cal asset price features, I simulate the model for different network structures.

I follow the calibration (see Table 1) and numerical algorithm of Adam et al. (2016).19 I
also take advantage of their data sources to evalute the match of empirical findings (Table
2) and the model outcomes.

parameter δ γ a sd sc ρc,d βRE PDmax gh gl
value 1.0 5 1.001 0.0245 sd

7 0.02 0.9961 500 0.0091 0.0061

Table 1: Simulation Calibration
For types’ gain, I consider a 20% variation of the gain used in AMN.

Fact Data
PD ratio Mean 123.91

PD ratio Variance 62.43
Stock return 2.25

Stock return Std. Dev 11.44
Bond return 0.15

Risk Premium 2.10
Dividend Growth Mean 0.41

Dividend Growth Std. Dev. 2.88

Table 2: U.S. Asset Pricing Facts, 1927:2 to 2012:2
Source: Adam et al. (2016)

I consider seven types of network structures by varying the social variable λi , given
the assumption that all social connections are known by the econometritian. Since I know
that only the maximum and minimum λi matter for pinning down equilibrium, it is
enough to impose two values for λi to analyze stock market behavior. Table 3 reports

19Details on the simulation algorithm can be found in Appendix E
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the quantitative outcomes. The thinking exercise is to imagine the same economy - as de-
scribed in the previous sections - with many individuals who can be rewired differently.
The set of possible connections is captured by λ’s values, so in a sense λ is a parameter
and choosing its possible values means taking a stand on how the social connections look
like. Throughout all the simulations, the economy is exactly the same - equal exogenous
shocks, individual gains and aggregate proportion of types - the only parameter changing
is λ.

Firstly, figures 1, 2 and 3 show realizations of time-series outcomes of our variables
of interest generated from simulating the calibrated model specification of λ∗t = {12 ,1}. I
display the evolution of the PD ratio, realized price growth, types’ risk-adjusted price
growth beliefs, equilbrium weight and belief. The simulated time series for the PD ratio
reproduce booms and busts similar those I observe in the data, reported by Adam et al.
(2016) and Adam et al. (2017) for example. Figure 1 display the fact that, even though
dividend follow an stochastic process, its growth rate oscilates around its mean value of
one which means a constant dividend growth process.20 Comparing equilibrium belief
and dividend fluctuations I see that the one responsible for the boom and busts are the
former: time series of β̃o

t and PDt move together.
Figure 2 displays some characteristics of the dynamics of our model: inexperienced

agents are more reactive and have more volatile beliefs; and outside of booms and busts
episodes the L-type agents is more optimistic. By looking at Figure 3 I see that experienced
investors are the most influencial across the simulated periods. H-type beliefs matter the
most for equilibrium under boom and busts. I do not report individual end-of-period
beliefs β̃i

t but it is known they are bounded by βh
t and βl

t , and so they would be graphically
located in between these time series in Figure 2.

The second exercise is to compare outcomes under different networks. The first four
rows of Table 3 picture scenarios in which λ∗ oscilates between two values and the highest
(lowest) one holds when price is continously increasing (decreasing). For example, λ =

{12 ,1} implies that β̃o
t = βh

t if βh
t > βl

t , that is during a boom, and β̃o
t = βht +β

l
t

2 if βh
t < βl

t , that
is, during the bust. Consider first the cases where λ varies. Not surprisinly, the social
structure exhibiting greater PD ratio volatility is the one assigning higher weight to βh at
any period (first and fourth rows). These same specifications delievers a lower PD ratio
mean. Booms have shorter duration and recovery periods are greater for higher values of
λ.

20This is clear by looking at the model dividend growth process speficiation (1)
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Figure 1: PD Ratio Volatility Sources
Figure compares model resulting processes for PD ratio, dividend growth and equilibrium belief under the specification of λ = { 12 ,1}.
All x-axis are time periods in quarters.

Figure 2: Simulation Outcome
Figure shows model resulting processes for types and equiblrium beliefs, types’ forecasting errors, PD ratio and realized risk-adjusted
price growth (in this order) under the specification ofλ = { 12 ,1}. All x-axis are time periods in quarters.

For the cases when λ is constant, PD ratio volatily increases significantly compared to
the cases discussed above. Interestingly, the PD ratio is most volatile when both agent’s
types equally influece asset price and booms last the longest.
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Figure 3: PD Ratio vs. Equilibrium Social Variable λ∗t
Figure pictures the equilbrium λ∗t at each PD ratio realization under the specification of λ = { 12 ,1}. The x-axis is time periods in quarters.

λ PDt rst rst − rb boom recovery
{12 ,1} 117.8340 (78.6245) 1.0161(0.1469) 1.0133 (0.1397) 3.7500 46.125
{0,1} 132.9476 (70.4948) 1.0109 (0.1166) 1.0081 (0.1075) 4.7143 52.4286
{0, 12 } 140.0370 (73.9671) 1.0104 (0.1121) 1.0075 (0.1025) 5 44.8750
{14 ,

2
3 } 130.8282 (79.7531) 1.0126 (0.1236) 1.0098 (0.1150) 5 44.7500

0 139.0173 (73.5757) 1.0105 (0.1115) 1.0077 (0.1019) 5.1250 45.1250
1
2 125.1482 (85.4103) 1.0147 (0.1337) 1.0119 ( 0.1258) 5.5000 44.2500
1 106.4490 (82.6147) 1.0205 ( 0.1540) 1.0176 (0.1471) 4 45.7500

Table 3: Simulation Results
Risk-free interest rate is rbt = 0.0048 under all specifications. The implied dividend process have a mean dividend growth of 1.0012 and
standard deviation of (0.0262). In brackets are the standard deviations of each varible. Boom and recovery variables are measured in
quarters.

Comparing stock return across the different social structures I see that the major dif-
ference concerns its volatility. More volatile return coincides with more volatile PD ratio.
There seems to be no evidence of neither higher PD ratio mean nor higher PD ratio volatil-
ity resulting in higher asset return. The resulting excess volatility of stock returns, defined
as the much higher volatility of rst compared to dividend growth volatility, matches the
data. The equity premium outcome varies little across specifications and it is about half
of its empirical mean value.

These results can be counterintuitive since one could expect that the more influential
are inexperienced investors, what leads to a more volatile stock market, would require a
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higher equity premium to compensate for a higher risk. In fact, Barberis et al. (2015) find
that, in a different framework where agents know the price process, the equity premium
rises as the fraction of agents with more volatile beliefs about future asset price changes
in the economy goes up. Under the baseline model of Adam et al. (2016), they are able
to reproduce the empirical risk premium only at a sufficiently high level of risk aversion
(γ = 80).21Thus, contrasting our result to the aforementioned ones suggests that a bet-
ter understading of what are the roots of such observed high risk premium in the stock
market is an important research avenue.

Notice that the dividend process in our framework has a lower mean value and vari-
ance, compared to the process implied by the data. Also, the simulated bond return is
significantly smaller than its observed counterpart. The above suggests then the the main
driving source of stock return outcome in the model is due to PD ratio behavior.22

Overall, the specifications replicate the empirical evidence of highly volatile PD ratio
which can be found in Table 3. It is also in line with empirical PD ratio mean and excessive
volatility of stock returns. Accounting for the existence of different types of investors
seems to be an important feature of modeling stock market behavior.

9 Unkown Network Structure

The ongoing discussion has been focusing on what price dynamics would emerge for
an exougenously given network. Some might argue that having the full knowledge of the
underlying social connections of the stock market is overwhelming. Yet (partially) true,
network theory comes in hand to overcome this obstacle and it enables the study of mar-
ket outcomes when one does not know the full social structure. Instead of characterizing
all existing edges among agents, I will assume that what is known are the probabilities of
linkages between and across types. In this sense, I take a step back on the model frame-
work and consider a more general setup.

The main idea behind random graph models is to suppose a random process is re-
sponsible for the formation of the links and then to randomly choose a network out of all
the possible networks with such linkages, each network having an equal probability of
being chosen. The properties of such random networks serve as a useful benchmark and
provide some insights into the properties that some social and economic networks have.

21Adam et al. (2016) quantitative results can be found in the Appendix E
22To see this notice that I can write rst =

1+PDt
PDt−1

Dt
Dt−1

.
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I analyze a variation of the well-known Erdos-Reny Random Graph Model (ERDdS
and R&wi (1959))23 with heterogenous links. But instead of modeling the network for-
mation as a purely random process, I assume it results from a strategic behavior of agents.
In our context, agents tend to be connected with those who share the same type. Hence,
this simplified version of so-called Islands-Connections Model of Jackson and Wolinsky
(1996) and our goal is to study the impact of homophily on stock market equilibrium.

Homophilly is the tendency to disproportionally stabilish connections with those hav-
ing similar traits. It has been the objective under analysis the network literature. For ex-
ample, Golub and Jackson (2012) study a model of friendship formation and the pattern of
linkages that emerges from homophily. Golub and Jackson (2012) study homophily under
the context of social learning and investage it effects on the convergence of consensus.

An Equal-Sized Two-Island Model

Under a similar framework as above, let agents be divided in two groups k = h, l

each with mass µk, such that µh + µl = 1. For simplicity, assume groups are of the same
size with µk = µ = 0.5 for all k = h, l. The network formation is such that links within a
type are more probable than links across types, and the probability of those across types
does not depend on the specifics of the types in question. An agent only distinguishes
between agents of his own type and agents of a different type same-type; and they are all
symmetric in how they do this. In a sense, other individual characteristics do not matter
for a connection to exist.

The probability that an individual of type k has an (undirected) link to an individual
of a different type k′ is given by pkk′ = pout, ∀k , k′ and the probability that a link is
formed with an individual of the same type is given by pkk = pin, ∀k. All links are
formed independently.

A measure of homophily is to compare the difference between same and different
linking probabilities to the average linking probability, with a normalization of dividing
by the number of groups24:

23The Erdos-Reny model is the simplest random graph model in which edges are i.i.d. random varibales.
All edges are independent and are formed with the same probability p. Hence, the distribtuion of all
edges is a Binomial Bin(n,p)

24This homophily measure is based on the work of
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p =
pin + pout

2
(37)

H̃ =
pin − pout

2p
∈ [0,1] (38)

where pin ≥ pout If nodes only links to same-type nodes (so that pout = 0), then H̃ = 1

and if nodes do not pay attention to type when linking (pin = pout), then H̃ = 0.5.
The proportion of agents’ neighbors of a given type is then a function of network

homophily. In turn, the social variables λk , k = h, l are given by25

λh =
pin

pin + pout
& λl =

pout
pin + pout

(39)

The above can be written in terms of the homophily index H̃ :

λh =
1+ H̃
2

→ ∂λh

∂H̃
> 0 (40)

λl =
1− H̃
2

→ ∂λl

∂H̃
< 0 (41)

As homophily increases, communication variable λk increases for the H-type and de-
creases for the L-type.26 Connections are mainly within groups, agents do not share their
beliefs and the equilibrium is either determined by inexperienced investors in the case
of a boom, or by experienced one, during a bust, that is, equilibrium weight tend to its
extremum values: λ∗→ 1 if ekt > 0 and λ∗→ 0 if ekt < 0.

Proposition 3. For any degree of homophily and any set of private beliefs βh
t ,β

l
t such that λh ≥ λl ,

equilibrium belief β̃o
t is given by inexperienced investors network structure λh whenever asset price

is increasing, and by λl when price is decreasing:

β̃o
t =

λhβ
h
t + (1−λh)β

l
t if Pt > Pt−1

λlβ
h
t + (1−λl)β

l
t if Pt < Pt−1

(42)

Homophily implication for stock market outcome easily follows then: PD ratio volatity
and the frequency of boom/busts are positive related to H̃ , whereas the duration of such

25Please refer to the Appendix for the derivation,
26This is a trivial result since λh +λl must sum up to 1.
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episodes decreases as H̃ increases. This means that economies with segregated groups
tend to exhibit a more espculative behavior in the stock market.

In fact, I can characterize asset price equilibrium behavior as a function of homophily.

Theorem 1. Consider the learning asset pricing model characterized by equations (1),(13), (25),
(26) with an unknown network structure. In the context of an equal-sized two-type random graph
network formation model, define the homophily index H̃ as the normalized difference between same
and different linking probabilities to the avarage linking probability and let λh = 1+H̃

2 ,λl = 1−λh.
For any set of linkages probabilities and any degree of homophily, the price-dividend equilibrium
equation is given by

PDt =
βRE

λ
φt
h λ

1−φt
l βh

t +λ
1−φt
h λ

φt
l βl

t

∀t,βh
t ,β

l
t (43)

where φt is an indicator variable given by φt = 1{βht −βlt>0} and zero otherwise, and βRE ≡
a1−γρ.

10 Concluding Remarks

This paper presents a simple asset pricing model with agents who have heterogenous
subjective expectations about risk-adjusted price growth and socially interact, by sharing
beliefs, through an exogenous given network. I show that the equilibrium asset price is
a function of agents’ beliefs and network structure. The model gives rises to boom and
busts in the price-dividend ratio and such episodes characteristics, such as the duration
and PD ratio volatility, depend on how communication among agents takes place. A key
insight highlighted by the present framework is that booms (busts) are more influenced
by agents who hold more (less) speculative beliefs.

One limitation of our study is our lack of asset pricing data apart from the U.S. stock-
market. I also do not estimate the social network and take it as pre-determined. A next
step of this research is then to estimate a network structure and apply its properties to the
model, for different stock-markets.

An interesting avenue for future research could be to endogeneize the upper bound
on agents’ beliefs that it is needed in our model to guarantee a finite equilibrium price.
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A RE as a special case

If the RE assumption holds, then all agents know exactly what price outcome will be
for any given history of realizations of the exogenous processes (Dt,Y t). In other words,
Eik
t = Et ∀t, i,k where Et(.) is the expectation of the ‘true’ stochastic price process. Agents

then can interate forward on equation (9):

Pt = δEt

[(
Ct+1

Ct

)−γ
Pt+1

]
+ δEt

[(
Ct+1

Ct

)−γ
Dt+1

]
= δEt

[(
Ct+1

Ct

)−γ{
δEt+1

[(
Ct+2

Ct+1

)−γ
Pt+2

]
+ δEt+1

[(
Ct+2

Ct+1

)−γ
Dt+2

]}]
+ δEt

[(
Ct+1

Ct

)−γ
Dt+1

]
...

= Et

[ ∞∑
s=1

δs
(
Ct+s

Ct

)−γ
Dt+s

]
+ lim

s→∞
Et

[(
Ct+s

Ct

)−γ
Pt+s

]

Assuming a no-rational-bubble requirement, it is common knowledge that

lim
s→∞

Et

[(
Ct+s

Ct

)−γ
Pt+s

]
= 0

Hence, equilibrium asset price is equal to the expected discounted sum of dividends

Pt = Et

[ ∞∑
s=1

δs
(
Ct+s

Ct

)−γ
Dt+s

]
= Et

[ ∞∑
s=1

δs
(
as

s∏
j=1

εct+j

)−γ
Dt(a

s
s∏

j=1

εdt+j)
]

=Dt

[ ∞∑
s=1

δs(a1−γ )s
] s∏
j=1

Et

(
εct+j

)−γ
Et

(
εdt+j

)

=Dt

[ ∞∑
s=1

δs(a1−γ )sρs
]

=
δa1−γρ

1− δa1−γρ
Dt

where I use definition (12), ρ = E[(εct+1)
−γεdt+1] ∀t, and exogenous processes (1) and (2).

Thus, defining βRE ≡ a1−γρ I get the rational expectations equilibrium asset price in
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equation (15).

B Proposition - Inexperienced agents are more reactive

First, to see why forecast errors are different than zero at any time priod, look at risk-
adjusted price growth and its subjective expectations as a function of βk

t :

∂

(
Ct
Ct−1

)−γ
Pt
Pt−1

∂βk
t

= βREδλk,∗
t

(1− δβ̃o
t−1)

(1− δβ̃o
t )2

> 1 (44)

∂Ek
t

{(
Ct
Ct−1

)−γ
Pt
Pt−1

}
∂βk

t

= 1 (45)

Clearly, a change βk
t implies a one-to-one change in agents’ beliefs (by definition) but

results in a greater change for realized price growth. Hence, the later always exceeds its
intial expectations.

Now, Proposition 1 easily follows from Assumption 5.1. To see this consider an arbi-

trary period t in which price is increasing. So it holds that
(

Ct
Ct−1

)−γ
Pt
Pt−1

> 1 and ekt−1 > 0.

By types’ belief updating equation (25), it must be that agents revise beliefs updward at
t +1: ∆βk

t+1 > 0 ∀k = h, l.
Since gheht > g lelt, it must be that ∆βh

t+1 > ∆βl
t+1 > 0. Consequently, βh

t+1−β
l
t+1 > βh

t −βl
t >

0 and thus it must be that βh
t > βl

t and βh
t+1 > βl

t+1.

On the other hand, consider a period when price is decreasing such that
(

Ct
Ct−1

)−γ
Pt
Pt−1

<

1 and ekt−1 < 0. Again, by equation (25) it must be that agents decrease their beliefs next
period: ∆βk

t+1 < 0 ∀k = h, l.
Since gheht < g lelt < 0, it must be that ∆βh

t+1 < ∆βl
t+1 < 0. That is, βh

t+1 − β
l
t+1 < βh

t − βl
t < 0

and thus it must be that βh
t < βl

t and βh
t+1 < βl

t+1.
As pointed out, these results follow from the Kalman filter equation of each type. The

gains are sufficiently different to guarantee that |gheht | > |g lelt | ∀t. In fact, the difference in
forecast errors eht − elt ∀t is virtually small because, for both types, beliefs are just small
deviations of the RE value (which is the same for both). Consequently, the range of differ-
ence in beliefs is also sufficiently small so that the comparison of each with realized price
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itself is virtually the same. The optimal Kalman gains then are what make H-type beliefs
to be more reactive to the forecast error and so to guarantee |∆βh

t | > |∆βl
t | ∀ t.

This discussion is also clear by looking at simulation results in Section 8 (Figure 2).
Importantly, despite the fact that beliefs oscilate around the RE value, these small devia-
tions are sufficient to render the fluctuation in the PD ratio I obtain from the model. Adam
et al. (2016) discuss this result in details and they argue that it is a strength of the model,
since just slight departures from rational expectations are enough to reproduce stylized
asset pricing facts.

C Recovery Periods

Let t be the period after a sharp continuous decrease in asset price following the boom
- that is, at the bottom of the bust - it holds that eht−1 < elt−1 < 0 and βh

t < βl
t . Price (and

so the PD ratio) returns to its mean value. In absecence of further shocks, price growth
is approximately constant which implies that agents find themselves too pessimistic and
start revising beliefs upwards according to the updating equations (25):

βh
t+1 = βh

t + gheht

βl
t+1 = βl

t + g lelt
such that ekt > 0 k = h, l

Then ∆βk
t+1 > 0 ∀k = h, l. By mean reversion of the PD ratio,

(
Ct
Ct−1

)−γ
≈ 1 during the

recovery periods. Then, I can rewrite the above as

βh
t+1 ≈ βh

t (1− gh) + gh

βl
t+1 ≈ βl

t(1− g l) + g l

Since, βl
t > βh

t and gh > g l it holds that (1− g l) > (1− gh). Because I consider gains to be
small (see equation (26)), it must be that βl

t+1 > βh
t+1. And so, for all period during recovery

in which the PD ratio is approximately constant, βl > βh. After beliefs have consistently
been increasing, price starts to increase sharply and so a boom episode is in motion.
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D Network Graphs examples

To the extent of comparison between the examples presented above, let private beliefs
βh
0 = βl

0 = β0 be the same across structures and assume dividend and consumption shocks
are also equal across networks.

Consider first a price growth greater than one as initial condition so that P0 > P−1, e0 > 0

and this constitues a boom episode. At t = 1, βk
1 k = l,h is the same for all networks and

βh
1 > βl

1. Price is increasing and so equilibrium belief is pinned down by the highest λi .

Realized PD ratio is P1
D1

= δβD

1−δβ̃o1
where β̃o

1 = λmaxβ
h
1 + (1 − λmax)β

l
1. The maximum λi is

greater under the tree/star structure, followed by the circle and the complete structures,
respectively: λ∗tree/star > λ∗circle > λ∗complete. Thus, equilibrium belief and realized price at
t = 1 also follow this magnitude relation. That is

β̃o,tree/star
1 > β̃o,circle

1 > β̃
o,complete
1

P tree/star
1

D1
>
P circle
1

D1
>
P
complete
1

D1

Since λ∗t has a positive effect on price growth during a boom, the higher is the former

the greater will be the forecast error ek1 =
(
C1
C0

)−γ
P1
P0
− βk

1 > 0 for k = h, l. Thus ek1,tree/star >

ek1,circle > ek1,complete > 0. In the next period t = 2, it holds then that βk,tree/star
2 > βk,circle

2 >

β
k,complete
2 ∀k with βh

2 > βl
2. Equilibrium belief and price will follow the above relation

across networks so that PD ratio is the highest in the tree/star graph and lowest in the
complete structure.

These results holds for all periods whenever expected price growth is positive, and
under this scenario I can conclude that:

• the lower the network mean degree (tree, star) the higher is realized price and equi-
librium belief at any period;

• less connected networks (tree, star) have greater price volatility when compared to
more connected ones (circle and complete graphs)

• higher network mean degree implies lower dispersion of agents’ public beliefs β̃i
t
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The analysis is analogous for a bust episode but results are qualitatively different.
Let initial conditions be of a negative realized and expected price growth P0 < P−1 and
e0 < 0. In the first period intital beliefs are the same across networks such that βh

1 < βl
1.

Price is determined by the lowest λi and so P1
D1

= δβD

1−δβ̃o1
where β̃o

1 = λminβ
h
1 + (1 −λmin)β

l
1.

Equilibrium λ∗ is lower in the tree/circle/star networks and higher in the complete graph
and thus

β̃o,tree/star/circle
1 > β̃

o,complete
1

P tree/star/circle
1

D1
>
P
complete
1

D1

Because λ∗t has a negative effect on price growth when price is decreasing, the higher

is λ∗t the lower (or greater in absolute value) will be forescast errors ek1 =
(
C1
C0

)−γ
P1
P0
−βk

1 < 0

for k = h, l since
[(

C1
C0

)−γ
P1
P0

]
complete

<

[(
C1
C0

)−γ
P1
P0

]
tree/star/circle

< βk
1 < 0. Thus ek1,complete <

ek1,tree/star/circle < 0. In the next period t = 2 then, it holds that βk,tree/star/circle
2 > β

k,complete
2 ∀k

with βh
2 < βl

2. Equilibrium belief and realized price will follow the above relation across
networks so that PD ratio decrease is greater under the complete network compared to
the tree/star/circle graphs.

These results holds for all periods whenever price is expected to decrease and I can
infer that:

• more connected networks have higher equilibrium social weight λ∗t and thus ex-
hibits lower realized price

• price decrease is greater the higher the mean degree and so it is PD volatility

Notice that even though the tree and star graphs have different structure, both share
the same expected degree and consequently they face the same price dynamics. In this
sense, individual nodes’ degree is not as relevant as the overall degree of network con-
nectivity.
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E Details on the Simulation

Under the calibrated parameters (Table 1), I simulated the model 1000 times through-
out 500 quarters.

Our simulation method is close to Adam et al. (2016). The main difference is in our
specification of agents’ subjective beliefs. As explained by them, to guarantee beliefs’
bound holds at all periods and equilibrium price always exist a differentiable projection
facility in belief updating equation is introduced. Specifically, equation (25) becomes

βk
t =ω

(
βk
t−1 + gk

[(
Ct

Ct−1

)−γ
Pt
Pt−1
− βk

t−1

])
∀k = h, l & t > 0 (46)

where ω(x) =


x x ≤ βL(

x−βL
x+βU−2βL

)
βU +

[
1−

(
x−βL

x+βU−2βL

)]
βL x > βL

(47)

where βL = 1
δ − 2(

1
δ − β

U ) and βU is such that the PD ratio doesn’t exceed 500. ω(x) is
a dampening function that applies only to few observations - when beliefs are close tho
their upper bounds. The upper bound on the PD ratio is chosen such that it is higher but
close to its maximum value found in the U.S. data (which is approximately 375).

Booms are calculated as the number of time periods the PD ratio stays above its RE
value at each cycle. Recovery periods are calculated as the number of time periods the
PD ratio stays below its RE value at each cycle.

Since one of our study motivation is Adam et al. (2016), I specify their main set of
results in Table E.1. I are able to repoduce similar empirical fact as them, but our model
exhibit greater PD ratio volatility and mean depending on the social strcuture. Moreover,
AMN do not discuss the lenght of booms and busts, but by looking at their results I
can infer that the present model is able to account for the duration of these episodes. I
consider this a relevant result since it implies that the presence of different investors in
the market and how they behave are also determinant of the length and magnitude of
booms and busts.
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Fact AMN
γ = 5 γ = 80

PD ratio Mean 122.50 115.75
PD ratio Std. Dev. 67.75 71.15

Stock return 1.27 2.11
Stock return Std. Dev. 10.85 16.31

Bond return 0.39 0.11
Risk Premium 0.88 2.0

Dividend Growth Mean 0.00 0.16
Dividend Growth Std. Dev. 2.37 4.41

Table E.1: Adam et al. (2016) Estimation Outcomes
Source: Adam et al. (2016)

F Unkown Network Structure

Define the expected number of links between types k and k′ as

Qkk′ = µkµk′pkk′ =

µ
2pout k , k′

µ2pin k = k′
(48)

and the expected sum of degrees of nodes of type k as

dk =
∑
k′

Qkk′ =Qkk +Qkk′ = µ2(pin + pout) (49)

By the definition then λ for each type is given by

λh =
Qhh

dh
=

pin
pin + pout

(50)

λl =
Qlh

dl
=

pout
pin + pout

(51)

Proposition

By definition λh ≥ λl , due to homophily. Recall the equilibrium equations (30) and
(31) for the model with a known network strucute. The propostion statement is simply
the most-optimistic belief equation β̃o

t replacing the communication variable.
To make the point clear, notice that during an price increase βh

t ≥ βl
t . Since λh ≥ λl , it

must be that the higher weight is given to the higher type-belief and so β̃o
t = λhβ

h
t + (1 −
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λh)β
l
t during a boom. Whereas during a bust, βh

t ≤ βl
t and because λl < (1−λl), it must be

that β̃o
t = λlβ

h
t + (1−λl)β

l
t .

Theorem

Look at equations (20), (30) and (31) along with the proposition above. Since λh > λl ,
it holds that

φt = 1↔ βh
t > βl

t ⇒ β̃o
t = λh

t β
h
t + (1−λh

t )β
l
t

φt = 0↔ βh
t < βl

t ⇒ β̃o
t = λl

tβ
h
t + (1−λl

t)β
l
t

Writting price equilibrium equation (20) as a function of φt,λh,λl delivers the Theo-
rem.
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